
Verifications of Network Protocol
Implementations - A Review

Saleema D1, Bejoy Abraham2

1PG Scholar,College of Engineering Perumon,
Perinad P.O,Kollam,Kerala,India

2Associate Professor in CSE,College of Engineering Perumon,
Perinad P.O, Kollam, Kerala,India

Abstract-Protocols used with different OSI layers plays an
important role in quality data communication. Ambiguities in
protocol specification leads to different interpretations by
developers. These ambiguities should be minimized to avoid
bugs and interoperability problems. There are several
approaches dealing with protocol implementation testing
which include a binary level verifications and code level
analysis of a protocol implementations. In this article we
present a formal review on verifications of protocol
implementations done through static and dynamic techniques.
Recent developments include a Symbolic Execution together
with a Rule-Based specification.

Keywords- Static verification, Dynamic Verification

I. INTRODUCTION
Network protocols are always prone to implementations
flaws, security vulnerabilities and interoperability issues
either caused by developer mistakes or ambiguities in
protocol specifications like RFC. These problems are very
difficult to detect because many bugs manifest only after
prolonged operations of protocol implementations and
reasoning about semantic errors requires a machine
readable specification[1]. There are several approaches
dealing with protocol implementation testing which
includes both static and dynamic analysis of source code of
implementation. Static analysis provides a static algorithm
for analysis of source code while Dynamic testing includes
dynamic test case generation by symbolically executing the
source code of implementation. In this paper we present a
literature review on the details of various types of methods
and techniques used for protocol implementation testing
and their performance towards different protocols.

II. STATIC CHECKING OF PROTOCOL

IMPLEMENTATIONS
The static (compile) time source code analysis of Network
protocols implementation is done by using a verification
tool Pistachio that checks source code of implementation
against rule based specifications. This was applied to
implementations of SSH and RCP protocols and detected
many bugs including security vulnerabilities. Pistachio was
explained with an alternating bit protocol implementation.
•Alternating bit protocol

1. Start by sending n = 1
2. If n is received, send n + 1
3. Otherwise resend

int main(void)

int socket, value=1, recvalue;
while(1)
send(socket,&value,sizeof(int));
{ recv(socket,&recvalue,sizeof(int));
if (recvalue == value)
value += 2;
send(socket,&value,sizeof(int));
Starting with an empty hypothesis successively setting the
values, and when we reached the conclusion a rule is
validated.
ie Ø (program entry)
=> send(_, out, _)
out[0..3] = 1
 n := 1
recv(_, in, _)
 in[0..3] = n
=> send(_, out, _)
out[0..3] = in[0..3] + 1
n := out[0..3]
All the communications are in terms of two communication
primitives send and receive. We will bind the value of val
in two parameters in and out. The rule specification
corresponding to this is shown above, setting the value of n
to 1.If n values are received, send n+1, otherwise resend n.
Program execution is simulated by symbolic execution,
which uses an automatic Theorem Prover that tracks
program variables, path conditions and checks whether
rules are satisfied and also branch conditions hold or not.
Found Pistachio is a very fast tool that detects many
security related errors with low false positive and negative
rates.
Darwin theorem prover returns an “yes” or “no”
corresponding to each theorem. Pistachio generates a
warning if a valid conclusion is not created from a
hypothesis. It generate a skeleton rule based specifications
for library functions, but some functions like getrrno() is
not modeled. Core rule set detected were functionality,
message format, compatibility, library call errors ,and
buffer overflow. Conclusion was not provable because of
out of bound exceptions due to buffer overflows. To detect
all these Pistachio can write regression rules. But Pistachio
couldn’t realize the depth of coverage of protocol
implementation source code. So Pistachio is extended with
a symbolic execution technique for detecting generic bugs

Saleema D et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 416-418

www.ijcsit.com 416

Fig 1. Fig.1.Pistachio Design

III. DYNAMIC VERIFICATION OF PROTOCOL

IMPLENETATION
Recent developments in verifications of network protocols
combine symbolic execution, a program analysis technique
that can generate inputs that explore multiple paths in a
program with rule based specifications to discover various
types of errors, which would be hard to detect manually
and express them in a high-level packet stream language,
which states invalid patterns in the sequence of packets
exchanged between a client and a server. Using symbolic
execution, the tool can generate an exhaustive set of input

packets that achieve a broad and deep exploration of the
program state space. The practical verification tool used is
SYMBEXNET. It is found that the former tool SYMNV
was a good tool for verifying network protocol
implementation flaws but the only limitation was it uses
only single packet symbolic execution and couldn’t check
whether different implementations of same network
protocols interoperate or not. This limitations were throne
out in SYMBEXNET. Here DHCP protocols were analyzed
for implementation bugs.

A. Rule Derivation
Rules are extracted from the RFC or IETF standard of
protocol, keywords such as SHALL, SHOULD, MUST etc
contained in the RFC documents are good candidates for
this.
Example rule for discovering inconsistent Query IDs in
DNS packets
1.query{source ip != 224.0.0.251
 2 AND flag.QR = 0x00
3 AND questions != 0x00}
4 ;
5 response {destination_ip = @query.source_ip
 6 AND flag.QR = 0x80
7 AND ANY data.answer(
8 name = @query.question.name)
9 AND id != @query.id}

Fig.2.SYMBEXNET Design

Saleema D et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 416-418

www.ijcsit.com 417

Thus encoding the externally-visible behavior of a network
protocol in terms of input and output packets. A rule
basically contains a parameter and the value which it can
acquire. The conditions may be logical or Boolean
expressions.

B. Validation of packet rules
The rule validation happens when new packets are
generated from binary implementation for the DHCP
Server. The captured input and output packets from the
previous step are validated against the rule-based
specification. SYMBEXNET translates the specification
rules into a set of non-deterministic finite automata
(NFAs). Through analyzing all captured replay packets
against each NFA, SYMBEXNET detects rule violations.

C. Symbolic Execution
Symbolic Execution is a program analysis technique used
in dynamic software testing. It generates an exhaustive set
of test input packets with high code coverage. The idea is to
use symbolic variables instead of actual data, which
generates an execution tree corresponding to each
conditional branch statements and a path constraint is
created which is solved by using a satisfiability checker. In
SYMBEXNET symbolic execution is carried out in packet
fields which considers combinations of fields symbolic in
multiple rounds.

IV. EXPERIMENTAL RESULT OF STATIC VERSUS

DYNAMIC VERIFICATIONS
The main idea behind static checking of protocol
implementation is to detect maximum bugs with minimum
false positives. Core rule set generated in Pistachio are
message structure and data transfer(format, structure, data
transfer in SSH2),compatibility rules(backward
compatibility with SSH1),Functionality rule(what
functionality should or should not support(none
authentication is not supported).Most of the warnings are
related to bug database which includes buffer overflow and
authentication failure. False positives are due to incorrect
specifications in library calls, also limitations of theorem
prover and loop breaking.
Dynamic testing of DHCP protocol implementation
detected a large no of bugs which are categorized into
Generic Bugs(from Symbolic execution),Semantic
Bugs(from rule based specifications), and interoperability
bugs .
Example Bugs
Generic Bugs: Vulnerability caused by source port
number
Semantic Bugs: Incorrect responses to unknown record
class.
Interoperability bugs: Incorrect responses to broadcast
address .

V. CONCLUSIONS
From our analysis of Static versus Dynamic testing of
different network protocol implementation testing it is
found that Dynamic testing can generates a large set of
dynamic test suites that explores multiple program paths to
detect a large set of bugs. Dynamic Testing strategy is a
stateful execution apart from the stateless static testing.

ACKNOWLEDGMENT
This paper recounts research done with others. In particular
we thank JaeSeung Song,Cristian Cadar,Peter Pietzuch,
Member, IEEE. for their work SYMBEXNET and Udrea,
C. Lumezanu, and J. S. Foster, “Rule-based static analysis
of network protocol implementations helped us in making
the review.

REFERENCES
[1] SYMBEXNET: Testing Network Protocol Implementations with

Symbolic Execution and Rule-Based Specifications, JaeSeung
Song,Cristian Cadar,Peter Pietzuch, Member, IEEE.

[2] O. Udrea, C. Lumezanu, and J. S. Foster, “Rule-based static analysis
of network protocol implementations,” Inf. Comput., vol. 206, pp.
130–157, Feb. 2008.

[3] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in Proc. 8th USENIX Conf. Operat. Syst. Des.
Implementation, 2008, pp. 209–224.

[4] C. Cadar, P. Godefroid, S. Khurshid, C. S. P_as_areanu, K. Sen, N.
Tillmann, and W. Visser, “Symbolic execution for software testing
in practice: Preliminary assessment,” in Proc. 33rd Int. Conf. Softw.
Eng., 2011, pp. 1066–1071.

[5] J. C. King, “Symbolic execution and program testing,” Commun.
ACM, vol. 19, pp. 385–394, Jul. 1976

[6] R. Droms. (1997, Mar.). IETF RFC 2131: Dynamic host
configuration protocol. [Online].Available:
http://www.ietf.org/rfc/rfc2131.txt

[7] R. Hao, D. Lee, R. K. Sinha, and N. Griffeth, “Integrated system
interoperability testing with applications to VoIP,” IEEE/ACM
Trans. Netw., vol. 12, no. 5, pp. 823–836, Oct. 2004.

[8] P. D. Marinescu and C. Cadar, “Make test-zesti: A symbolic
execution solution for improving regression testing,” in Proc. 34th
Int. Conf. Softw. Eng., Jun. 2012, pp. 716–726.

[9] O. Kon and R. Castanet, “Test generation for interworking
systems,”Comput. Commun., vol. 23, no. 7, pp. 642–652, 2000.

[10] R. Sasnauskas, O. Landsiedel, M. H. Alizai, C. Weise, S.
Kowalewski, and K. Wehrle, “Kleenet: Discovering insidious
interaction bugs in wireless sensor networks before deployment,” in
Proc. 9th ACM/IEEE Int. Conf. Inf. Process. Sens. Netw.2010, pp.
186–196.

[11] A. Vallejo, J. Ruiz, J. Abella, A. Zaballos, and J. Selga, “State of the
art of ipv6 conformance and interoperability testing,” IEEE
Commun.Mag., vol. 45, no. 10, pp. 140–146, Oct. 2007.

Saleema D et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 416-418

www.ijcsit.com 418

